

# High Temperature Alloys

# **CONSUMABLES TO MATCH HP40Nb**

# DATA SHEET C-50

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL

Tel: +44(0)1932 566721
Fax: +44(0)1932 565168 Sales
Fax: +44(0)1932 569449 Technical
Fax: +44(0)1932 566199 Export
Email: info@metrode.com
Internet: http://www.metrode.com

# Alloy type

Consumables to match 0.4% C-25% Cr-35% Ni-Nb heat resistant cast alloys.

#### Materials to be welded

# **Matching alloys**

ASTM-ASME DIN

A297 'HP40Cb' 1.4852 (G-X40NiCrNb 35 25)

1.4853 (wrought)

#### **Proprietary alloys**

Paralloy H39W (Doncasters Paralloy)

Lloyds T64 (LBA)

MORE 10 & 10-MA (Duraloy)

Thermalloy 64 (Duraloy)

Manaurite 36X & 36XM (Manoir)

Pyrotherm G25/35Nb & NbTZ (Pose Marre)

Centralloy 4852 & 4852 Micro (Schmidt + Clemens -

Centracero)

E2535Nb & E2535Nb-MA (Engemasa)

#### **Nb-free alloys**

ASTM-ASME DIN

A297 HP or HP40 1.4857 (G-X40NiCrSi 35 25)

1.4853 (wrought)

# **Proprietary alloys**

Paralloy H39 (Doncasters Paralloy) Lloyds T63 (LBA) HR33 (Cronite)

Also suitable for high carbon 18%Cr-37%Ni-Nb alloys eg. DIN 1.4849.

# **Applications**

These consumables are designed to match heat resistant cast alloys with 0.4%C-25%Cr-35%Ni-Nb, including those micro-alloyed with Ti to increase creep resistance.

They are also suitable for the Nb free alloys and leaner high carbon Cr-Ni alloys such as HK40, HT40 and IN519 where overmatching weld metal will normally be acceptable.

Alloy HP40Nb is not prone to sigma phase embrittlement and the presence of eutectic and secondary carbides provide excellent hot strength and creep resistance in the typical service temperature range 900-1100°C. High levels of Cr and Ni provide good resistance to oxidation and carburisation.

The principal applications are **pyrolysis coils** and **reformer tubes** for **ethylene production** in the **petrochemical industry**.

#### **Microstructure**

In the as-welded condition the weld metal consists of austenite with eutectic and secondary carbide.

# Welding guidelines

Generally preheat is not required.

# Related alloy groups

There are a number of related high carbon Cr-Ni alloys which are used in the same type of applications, see other alloys in the Hot Zone. There is also a lower carbon version of the 25% Cr-35% Ni alloy (data sheet C-40) which provides better thermal shock and fatigue, with some reduction in creep strength.

#### Products available

| Process | Product        | Specification   |
|---------|----------------|-----------------|
| MMA     | Thermet HP40Nb | BS 25.35.H.Nb.B |
| TIG/MIG | 25.35.4CNb     |                 |

Rev 04 09/11 DS: C-50 (pg 1 of 3)



| THERMET HP                          | 40Nb                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                           |                                                                                             |                                                                                               | Ba                                      | sic ele                                                                         | ectrode                                | e mato                                                                                                     | ching                                                                           | HP40                        | Nb alloys                                    |  |  |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------|----------------------------------------------|--|--|
| Product description                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                           | A electroc<br>arge mult                                                                     |                                                                                               |                                         | purity a                                                                        | alloy co                               | re wire,                                                                                                   | giving                                                                          | g high r                    | resistance to                                |  |  |
|                                     | Recover                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y is abou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ut 120%                                          | 6 with r                                  | espect to o                                                                                 | core wire                                                                                     | , 65% with                              | respec                                                                          | t to who                               | le electr                                                                                                  | ode.                                                                            |                             |                                              |  |  |
| Specifications                      | BS 292                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  | 25.3                                      | 35.H.Nb.E                                                                                   | 3                                                                                             |                                         |                                                                                 |                                        |                                                                                                            |                                                                                 |                             |                                              |  |  |
| ASME IX Qualification               | QW432 F-No -                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                           |                                                                                             |                                                                                               |                                         |                                                                                 |                                        |                                                                                                            |                                                                                 |                             |                                              |  |  |
| Composition                         | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mn                                               | Si                                        | S                                                                                           | Р                                                                                             | Cr                                      | Ni                                                                              | Мо                                     | Nb                                                                                                         | Ti                                                                              |                             |                                              |  |  |
| (weld metal wt %)                   | min                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5                                              | 0.2                                       |                                                                                             |                                                                                               | 23.0                                    | 32.0                                                                            |                                        | 0.75                                                                                                       | 0.02                                                                            |                             |                                              |  |  |
|                                     | max                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0                                              | 1.3                                       | 0.030                                                                                       | 0.040                                                                                         | 27.0                                    | 36.0                                                                            | 0.5                                    | 1.50                                                                                                       | 0.20                                                                            |                             |                                              |  |  |
|                                     | typ                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.7                                              | 0.9                                       | 0.010                                                                                       | 0.010                                                                                         | 25                                      | 35                                                                              | 0.1                                    | 1.1                                                                                                        | 0.08                                                                            |                             |                                              |  |  |
| All-weld mechanical                 | As welde                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                                           |                                                                                             |                                                                                               | min *                                   |                                                                                 | typical                                |                                                                                                            |                                                                                 |                             |                                              |  |  |
| properties                          | Tensile s                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | N                                         | IPa                                                                                         | 600 (450)                                                                                     | )                                       | 740                                                                             |                                        |                                                                                                            |                                                                                 |                             |                                              |  |  |
|                                     | 0.2% Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                           | M                                                                                           | IPa                                                                                           | (250)                                   |                                                                                 | 560                                    |                                                                                                            |                                                                                 |                             |                                              |  |  |
|                                     | Elongatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                           |                                                                                             | %                                                                                             | (5)                                     |                                                                                 | 15                                     |                                                                                                            |                                                                                 |                             |                                              |  |  |
|                                     | Elongation Reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                           |                                                                                             | %                                                                                             |                                         |                                                                                 | 15<br>17                               |                                                                                                            |                                                                                 |                             |                                              |  |  |
|                                     | Hardnes                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a                                                |                                           | 1                                                                                           | HV                                                                                            |                                         |                                                                                 | 240                                    |                                                                                                            |                                                                                 |                             |                                              |  |  |
|                                     | <ul> <li>* Minimum tensile strength of 600MPa is from BS2926; the values in brackets are minimum values for base material static castings.</li> <li>Room temperature elongation has little significance for weld metal designed for high temperature service and creep resistance. Values down to 4.5% (on 4d) are allowed in ASTM HP40 castings and the ductility of multipass welds may approach this value due to carbide precipitation in successive runs.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                           |                                                                                             |                                                                                               |                                         |                                                                                 |                                        |                                                                                                            |                                                                                 |                             |                                              |  |  |
|                                     | welds m                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                           |                                                                                             |                                                                                               |                                         |                                                                                 |                                        |                                                                                                            | na me o                                                                         | auctiffty                   | ormunipass                                   |  |  |
|                                     | Stress re                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ay appro<br>upture/c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ach thi                                          | s value                                   |                                                                                             |                                                                                               |                                         |                                                                                 |                                        | 18.                                                                                                        | ife                                                                             |                             | longation                                    |  |  |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ay appro<br>upture/o<br>Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ach thi                                          | s value                                   |                                                                                             |                                                                                               | cipitation i                            |                                                                                 |                                        | ns.<br>Li                                                                                                  |                                                                                 |                             | 10100010000100001000100010000                |  |  |
|                                     | Stress re                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ay approupture/c Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ach thi                                          | ata:  °F  1600                            |                                                                                             | MPa 48.2                                                                                      | cipitation i                            | n succe                                                                         |                                        | Li<br>Ho                                                                                                   | ife<br>urs                                                                      |                             | longation % 6                                |  |  |
|                                     | Stress ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ay approupture/c Temp C 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ach thi                                          | s value  ata:  F  1600  1700              |                                                                                             | MPa<br>48.2<br>27.6                                                                           | cipitation i                            | ksi 7 4                                                                         |                                        | Li<br>Ho<br>14<br>23                                                                                       | ife<br>urs<br>31                                                                |                             | longation % 6 3                              |  |  |
|                                     | Stress re                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ay approupture/c Temp C 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ach thi                                          | ata:  °F  1600                            |                                                                                             | MPa 48.2                                                                                      | cipitation i                            | n succe                                                                         |                                        | Li<br>Ho<br>14<br>23                                                                                       | ife<br>urs                                                                      |                             | longation % 6                                |  |  |
| Operating parameters                | Stress ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ay approupture/c Temp C 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ach thi                                          | s value  ata:  F  1600  1700              |                                                                                             | MPa<br>48.2<br>27.6                                                                           | cipitation i                            | ksi 7 4                                                                         |                                        | Li<br>Ho<br>14<br>23                                                                                       | ife<br>urs<br>31                                                                |                             | longation % 6 3                              |  |  |
| Operating parameters                | Stress ro<br>°C<br>87<br>92<br>98                                                                                                                                                                                                                                                                                                                                                                                                                                         | ay approupture/c Temp C 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ach thi                                          | s value  ata:  F  1600  1700              |                                                                                             | MPa<br>48.2<br>27.6                                                                           | cipitation i                            | ksi 7 4                                                                         |                                        | Li<br>Ho<br>14<br>23                                                                                       | ife<br>urs<br>31<br>98<br>.14                                                   |                             | longation % 6 3                              |  |  |
| Operating parameters                | Stress ro<br>°C<br>87<br>92<br>98<br>DC +ve                                                                                                                                                                                                                                                                                                                                                                                                                               | ay approupture/c Temp C 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ach thi                                          | ata:  °F  1600  1700  1800                |                                                                                             | MPa<br>48.2<br>27.6<br>17.3                                                                   | cipitation i                            |                                                                                 |                                        | Li Ho 14 23 24                                                                                             | ife<br>urs<br>.31<br>.98<br>.14                                                 |                             | longation % 6 3                              |  |  |
| Operating parameters                | Stress ro<br>87<br>92<br>98<br>DC +ve                                                                                                                                                                                                                                                                                                                                                                                                                                     | ay approupture/c Temp C 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ach thi                                          | s value  ata:  F  1600  1700  1800        |                                                                                             | MPa<br>48.2<br>27.6<br>17.3                                                                   | cipitation i                            | ksi 7 4 2.5                                                                     |                                        | Li Ho 14 23 24                                                                                             | ife<br>urs<br>31<br>98<br>14                                                    |                             | longation % 6 3                              |  |  |
|                                     | Stress ro<br>87<br>92<br>98<br>DC +ve<br>ø mm<br>min A<br>max A                                                                                                                                                                                                                                                                                                                                                                                                           | ay approupture/c Temp C 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ach thi                                          | ata:  F 1600 1700 1800  2.5 60 90         |                                                                                             | MPa 48.2 27.6 17.3 3.2 75 120                                                                 | cipitation i                            | ksi<br>7<br>4<br>2.5<br>4.0<br>100<br>155                                       |                                        | Li Ho 14 23 24 5.0 130 210                                                                                 | ife<br>urs<br>31<br>98<br>14                                                    |                             | longation % 6 3                              |  |  |
| Operating parameters Packaging data | Stress ro<br>87<br>92<br>98<br>DC +ve<br>ø mm<br>min A<br>max A                                                                                                                                                                                                                                                                                                                                                                                                           | ay appro<br>upture/o<br>Temp<br>C<br>11<br>17<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ach thi                                          | ata:  F 1600 1700 1800  2.5 60 90 2.5     |                                                                                             | MPa 48.2 27.6 17.3 3.2 75 120 3.2                                                             | cipitation i                            | ksi<br>7<br>4<br>2.5<br>4.0<br>100<br>155<br>4.0                                |                                        | Li Ho 14 23 24  5.0 133 210                                                                                | ife<br>urs<br>31<br>98<br>14                                                    |                             | longation % 6 3                              |  |  |
|                                     | Stress ro<br>87<br>92<br>98<br>DC +ve<br>ø mm<br>min A<br>max A                                                                                                                                                                                                                                                                                                                                                                                                           | ay appro<br>upture/o<br>Temp<br>C<br>11<br>17<br>122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ach thi                                          | ata:  F 1600 1700 1800  2.5 60 90         |                                                                                             | MPa 48.2 27.6 17.3 3.2 75 120                                                                 | cipitation i                            | ksi<br>7<br>4<br>2.5<br>4.0<br>100<br>155                                       |                                        | Li Ho 14 23 24 5.0 130 210                                                                                 | ife<br>urs<br>31<br>998<br>14<br>0<br>0<br>0                                    |                             | longation % 6 3                              |  |  |
|                                     | Stress re 87 92 98 DC +ve Ø mm min A max A Ø mm length m                                                                                                                                                                                                                                                                                                                                                                                                                  | m m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ach thi                                          | ata:  F 1600 1700 1800  2.5 60 90 2.5 265 |                                                                                             | MPa 48.2 27.6 17.3 3.2 75 120 3.2 320                                                         | cipitation i                            | ksi<br>7<br>4<br>2.5<br>4.0<br>100<br>155<br>4.0<br>320                         |                                        | Li Ho 14 23 24 5.0 13 21 5.0 32                                                                            | ife urs 31 998 14                                                               |                             | longation % 6 3                              |  |  |
|                                     | Stress re 87 92 98 DC +ve Ø mm min A max A Ø mm length m kg/cartor pieces/ca 3 herme for longe moisture For elect Redry 2 Storage                                                                                                                                                                                                                                                                                                                                         | m marton  tically ser than a pick-up trodes the 00 – 300 of redrices and a pick-up trodes the control of the co | ealed raworking and in at have                   | ata:  9                                   | I metal tir<br>of 8h. E<br>he risk of<br>xposed:<br>tore to as-<br>t 50 – 200               | MPa 48.2 27.6 17.3 3.2 75 120 3.2 320 12.3 348 s per car xcessive porosity -packed of C in ho | Stress  ton, with u exposure condition. | ksi   7   4   2.5   4.0   100   155   4.0   320   12.0   228   mlimite of elect | d shelf li rodes to tum 400° tted quiv | 5.0<br>130<br>241<br>5.0<br>321<br>5.0<br>6.0 Dire humid of C, 3 cyer: no li                               | ife urs 31 98 14 0 0 0 0 0 0 ct use ficcondition rcles, 10 mit, bu              | rom tin ions will Oh total. | longation % 6 3                              |  |  |
| Packaging data                      | Stress re 87 92 98 DC +ve Ø mm min A max A Ø mm length m kg/cartor pieces/ca 3 herme for longe moisture For elect Redry 2 Storage recomme                                                                                                                                                                                                                                                                                                                                 | m n arton  tically s er than a e pick-up trodes th 00 – 300 of redriended. F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ealed raworking and inat have of elec Recommends | ata:  9                                   | I metal tir<br>of 8h. E<br>he risk of<br>xposed:<br>tore to as-<br>t 50 – 200<br>ambient st | MPa 48.2 27.6 17.3 3.2 75 120 3.2 320 12.3 348 s per car xcessive porosity -packed of C in ho | Stress  ton, with u exposure condition. | ksi   7   4   2.5   4.0   100   155   4.0   320   12.0   228   mlimite of elect | d shelf li rodes to tum 400° tted quiv | 5.0<br>130<br>241<br>5.0<br>321<br>5.0<br>6.0 Dire humid of C, 3 cyer: no li                               | ife urs 31 98 14 0 0 0 0 0 0 ct use ficcondition rcles, 10 mit, bu              | rom tin ions will Oh total. | Iongation % 6 3 3  S satisfactory cause some |  |  |
| Packaging data Storage              | Stress re 87 92 98 DC +ve Ø mm min A max A Ø mm length m kg/cartor pieces/ca 3 herme for longe moisture For elect Redry 2 Storage                                                                                                                                                                                                                                                                                                                                         | m harton  tically ser than a pick-up trodes the 100 - 300 of redricended. Femposition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ealed raworking and inat have of elec Recommends | ata:  9                                   | I metal tir<br>of 8h. E<br>he risk of<br>xposed:<br>tore to as-<br>t 50 – 200<br>ambient st | MPa 48.2 27.6 17.3 3.2 75 120 3.2 320 12.3 348 s per car xcessive porosity -packed of C in ho | Stress  ton, with u exposure condition. | ksi   7   4   2.5   4.0   100   155   4.0   320   12.0   228   mlimite of elect | d shelf li rodes to tum 400° tted quiv | 5.0<br>130<br>210<br>5.0<br>320<br>5.0<br>320<br>120<br>150<br>6.0 Dire humid of the control is sing plass | ife urs 31 98 14  0 0 0 0 0 3 3 ct use ficcondition rcles, 10 mit, bu stic lid) | rom tin ions will Oh total. | s satisfactory cause some                    |  |  |

Rev 04 09/11 DS: C-50 (pg 2 of 3)



|                                                |                                                    |                                                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |         |      |          | 40Nb a                |        |
|------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------|---------|------|----------|-----------------------|--------|
| Product description                            | Solid                                              | Solid wire for TIG, auto-TIG and MIG.                            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |         |      |          |                       |        |
| Specifications                                 | There                                              | are no r                                                         | nationa                           | l speci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | fications                                                                            | for this                             | wire                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |         |      |          |                       |        |
| ASME IX Qualification  Composition (wire wt %) | QW432 F-No -                                       |                                                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |         |      |          |                       |        |
|                                                |                                                    | С                                                                | Mn                                | Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S                                                                                    | Р                                    | Cr                           | Ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Мо                    | Nb                | Ti      | Zr   | Cu       | Sn                    | Pb     |
|                                                | min                                                | 0.40                                                             | 1.0                               | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                      |                                      | 23.0                         | 32.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | 0.75              | 0.05    | 0.01 |          |                       |        |
|                                                | max                                                | 0.50                                                             | 2.5                               | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02                                                                                 | 0.02                                 | 27.0                         | 36.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.50                  | 1.50              | 0.25    | 0.15 | 0.5      |                       |        |
|                                                | typ                                                | 0.43                                                             | 1.7                               | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.005                                                                                | 0.01                                 | 26                           | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.3                 | 1.1               | 0.1     | 0.03 | 0.1      | < 0.01                | < 0.01 |
| All-weld mechanical                            | Typica                                             | Typical values as welded                                         |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TI                    | G                 |         |      |          |                       |        |
| properties                                     | Tensil                                             | e streng                                                         | th                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      | MPa                                  | 4                            | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 76                    | 50                |         |      |          |                       |        |
|                                                | 0.2%                                               | Proof str                                                        | ess                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      | MPa                                  | 1                            | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51                    | 15                |         |      |          |                       |        |
|                                                | _                                                  | ation on                                                         |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %                                                                                    |                                      | 5                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                     |                   |         |      |          |                       |        |
|                                                | Elong                                              | ation on                                                         | 5d                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      | %                                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                     | 3                 |         |      |          |                       |        |
|                                                |                                                    | ction of a                                                       |                                   | %<br>HV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                      |                                      | 1                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |         |      |          |                       |        |
|                                                | Hardn                                              | Hardness cap/mid                                                 |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 211/                  | 263               |         |      |          |                       |        |
|                                                |                                                    | tempera                                                          | ature el                          | ongatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on has lit                                                                           |                                      | icance                       | for welc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                   |         |      |          | ervice an             |        |
| Typical operating                              | resista<br>may a                                   | tempera<br>ance. Va<br>pproach                                   | ature el<br>lues do               | ongatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on has lit<br>4.5% (on                                                               | tle signif                           | icance<br>allowed            | for weld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | гм нр4                | 0 castir          |         |      |          | ervice an<br>multipas |        |
| Typical operating parameters                   | resista<br>may a                                   | tempera<br>ance. Va<br>pproach                                   | ature el<br>lues do               | ongation<br>wn to 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | on has lit<br>4.5% (on<br>e to carb<br>TIG<br>Argon                                  | tle signif<br>4d) are a              | icance<br>allowed            | for weld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | гм нр4                | 0 castir          |         |      |          |                       |        |
|                                                | resista<br>may a<br>Shield<br>Currei               | ntempera<br>nnce. Va<br>pproach<br>ling<br>nt                    | ature el<br>lues do               | ongation wn to a lue du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on has lit<br>4.5% (on<br>e to carb<br>TIG<br>Argon<br>DC-                           | tle signif<br>4d) are a              | icance<br>allowed            | for weld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | гм нр4                | 0 castir          |         |      |          |                       |        |
|                                                | resista<br>may a<br>Shield<br>Currer<br>Diame      | i tempera<br>ance. Va<br>pproach<br>ling<br>nt                   | ature el<br>lues do               | ongation wn to a lue du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on has lit<br>4.5% (on<br>e to carb<br>TIG<br>Argon<br>DC-                           | tle signif<br>4d) are a              | icance<br>allowed            | for weld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | гм нр4                | 0 castir          |         |      |          |                       |        |
|                                                | resista<br>may a<br>Shield<br>Currei               | i tempera<br>ance. Va<br>pproach<br>ling<br>nt                   | ature el<br>lues do               | ongation wn to a lue du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on has lit<br>4.5% (on<br>e to carb<br>TIG<br>Argon<br>DC-                           | tle signif<br>4d) are a              | icance<br>allowed            | for weld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | гм нр4                | 0 castir          |         |      |          |                       |        |
| parameters                                     | resista<br>may a<br>Shield<br>Currer<br>Diame      | i tempera<br>ance. Va<br>pproach<br>ling<br>nt                   | ature el<br>lues do               | ongation wn to a lue du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on has lit<br>4.5% (on<br>e to carb<br>TIG<br>Argon<br>DC-                           | tle signif<br>4d) are a<br>ide preci | icance<br>allowed<br>pitatio | for weld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rm HP4                | 0 castir<br>runs. |         |      |          |                       |        |
| parameters                                     | Shield<br>Currer<br>Diame                          | i tempera<br>ance. Va<br>pproach<br>ling<br>nt                   | ature el<br>lues do               | ongation wn to a lue du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on has lit<br>4.5% (on<br>e to carb<br>TIG<br>Argon<br>DC-<br>2.4mm<br>0A,12V        | tle signif<br>4d) are a<br>ide preci | Spoole used for              | for welcd in AST on in suc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rm HP4 ecessive       | 0 castir<br>runs. |         |      |          |                       |        |
|                                                | Shield<br>Currer<br>Diame<br>Param                 | i tempera<br>ance. Va<br>pproach<br>ling<br>nt                   | ature el<br>lues do               | ongatio<br>wn to 4<br>alue du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | on has lit<br>4.5% (on<br>e to carb<br>TIG<br>Argon<br>DC-<br>2.4mm<br>0A,12V<br>TIG | tle signif<br>4d) are a<br>ide preci | Spoole used for              | for welcd in AST on in succeed wire in succeed wire in succeed wire in succeed wire in succeed with the succeeding the succeed | rm HP4 ecessive       | 0 castir<br>runs. |         |      |          |                       |        |
| parameters                                     | Shield<br>Currer<br>Diame<br>Param<br>Ø mm         | i tempera<br>ance. Va<br>pproach<br>ling<br>nt                   | ature el<br>lues do               | ongation with the control of the con | TIG Argon DC- 2.4mm 0A,12V TIG Skg tube                                              | tle signif<br>4d) are a<br>ide preci | Spoole used for              | for weld d in AST n in such                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rm HP4 ecessive       | 0 castir<br>runs. |         |      |          |                       |        |
| parameters                                     | Shield Currer Diame Param Ø mm 1.2 1.6             | i tempera<br>ance. Va<br>pproach<br>ling<br>nt                   | ature el<br>lues do               | 2.5<br>2.5<br>2.5<br>2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TIG Argon DC- 2.4mm 0A,12V TIG Skg tube Skg tube                                     | tle signif<br>4d) are a<br>ide preci | Spoole used for              | for weld d in AST n in such                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rm HP4 ecessive       | 0 castir<br>runs. |         |      |          |                       |        |
| parameters                                     | Shield Currer Diame Param Ø mm 1.2 1.6 2.0         | i tempera<br>ance. Va<br>pproach<br>ling<br>nt                   | ature el<br>lues do               | 2.5<br>2.5<br>2.5<br>2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TIG Argon DC- 2.4mm 0A,12V TIG Skg tube                                              | tle signif<br>4d) are a<br>ide preci | Spoole used for              | ed wire roor autom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rm HP4 ecessive       | 0 castir<br>runs. |         |      |          |                       |        |
| parameters                                     | Shield Currer Diame Param Ø mm 1.2 1.6 2.0 2.4 3.2 | i tempera<br>ance. Va<br>pproach<br>ling<br>nt<br>eter<br>neters | ature el<br>llues do<br>a this va | 2.5<br>2.5<br>2.5<br>2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TIG Argon DC- 2.4mm 0A,12V TIG Skg tube Skg tube Skg tube                            | tle signif<br>4d) are a<br>ide preci | Spook used for               | ed wire roor autom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rm HP4 ecessive       | 0 castir<br>runs. |         |      |          |                       |        |
| Packaging data                                 | Shield Currer Diame Param Ø mm 1.2 1.6 2.0 2.4 3.2 | i tempera<br>ance. Va<br>pproach<br>ling<br>nt<br>eter<br>neters | ature el<br>lues do<br>this va    | 2.5<br>2.5<br>2.5<br>2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TIG Argon DC- 2.4mm 0A,12V TIG Skg tube Skg tube Skg tube                            | tle signif<br>4d) are a<br>ide preci | Spook used for               | ed wire roor autom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | normally<br>actic TIG | 0 castir<br>runs. | ngs and |      | ility of |                       |        |

Rev 04 09/11 DS: C-50 (pg 3 of 3)