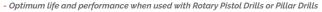


Countersink Diameter	Structural Steel <500 Mpa	Structural Steel <1000 Mpa	Stainless Steel INOX	Aluminium	Cast Iron (Grey)	Plastics		
	RPM Range							
12.4 _{mm}	385	255	110	635	265	480		
16.5 _{mm}	295	185	80	485	210	345		
20.5 _{mm}	230	155	50	385	165	280		
25 _{mm}	185	130	50	315	130	225		
31 _{mm}	155	105	35	265	105	185		

Refer to Page 114 for Pilot Hole Drilling Speeds


BEST PRACTICE ADVICE

GUIDELINE PARAMETERS ONLY - Actual parameters may vary depending on operating conditions

- 1. Use with a variable speed motor. Drill and countersink operations should be run at the appropriate speed for each process
- 2. Apply firm, steady feed pressure throughout the cut
- 3. Avoid lateral movement or tilting which can cause damage to the tool
- 4. Ensure regular application of quality cooling lubricant, especially when drilling thick or hardened materials
- 5. Hardened or heat-affected materials may require higher torque, reduced RPM and feed rates and extra coolant
- 6. Ensure a debris free surface of sufficient steel thickness for strong magnet hold when Magnet Drilling
- Use at highest available Gear setting (for maximum torque).
- 8. Best countersinking results are achieved using a variable speed drill that allows the correct speed to be set
- Piloted Countersink Bits (like the MultiSink) will significantly increase countersinking performance preventing movement of the countersink whilst drilling
- 10. Follow guidelines to set correct RPM speed. Incorrect RPM can lead to poor life or tool breakage

QUICK GUIDE

MORE INFO

- Up to 16.5mm can be used on Impact Wrench & Impact Drivers for fast cutting performance
- Suitable for harder materials such as stainless steel when used at reduced RPM
- Use appropriate lubrication and correct RPM to achieve long tool life

VersaDrive® Countersinks - Data Sheet

	ountersink Diameter	Structural Steel <500 Mpa	Structural Steel <1000 Mpa	Stainless Steel INOX	Aluminium	Cast Iron (Grey)	Plastics
RPM Range							
Metric	6.3 _{mm}	765	505	265	1250	500	850
	8.3 _{mm}	535	355	195	865	340	585
	10.4 _{mm}	460	300	145	765	315	530
	12.4 _{mm}	385	255	110	635	265	480
	16.5 _{mm}	295	185	80	485	210	345
	20.5 _{mm}	230	155	50	385	165	280
	25 _{mm}	185	130	50	315	130	225
	31 _{mm}	155	105	35	265	105	185
Inch	1/4"	765	505	265	1250	500	850
	3/8"	460	300	145	765	315	530
	1/2"	385	255	110	635	265	480
	5/8"	295	185	80	485	210	345
	3/4"	230	155	50	385	165	280
	1"	185	130	50	315	130	225


BEST PRACTICE ADVICE

GUIDELINE PARAMETERS ONLY - Actual parameters may vary depending on operating conditions

- 1. Follow guidelines to set correct RPM speed. Incorrect RPM can lead to poor life or tool breakage
- 2. Apply firm, steady feed pressure throughout the cut
- 3. Avoid lateral movement or tilting which can cause damage to the tool
- 4. Ensure regular application of quality cooling lubricant, especially when drilling thick or hardened materials
- 5. Hardened or heat-affected materials may require higher torque, reduced RPM and feed rates and extra coolant
- 6. Ensure a debris free surface of sufficient steel thickness for strong magnet hold when Magnet Drilling
- 7. Use at highest available Gear setting (for maximum torque)
- 8. Best countersinking results are achieved using a variable speed drill that allows the correct speed to be set

QUICK GUIDE

MORE INFO

- Up to 16.5mm can be used on Impact Wrench & Impact Drivers for fast cutting performance
- Suitable for harder materials such as stainless steel when used at reduced RPM
- Use appropriate lubrication and correct RPM to achieve long tool life

